Issue #2 - correct resolution to RFC3339 date encoding
Reverts provisional commit and applies the correct fixes to gf256 math module. This resolves incorrect ECC generation for a large number of cases where the most significant polynomial in a remainder resolves to 0 at any point during the generation of intermediate remainder values.
This commit is contained in:
parent
0408ab8857
commit
596656536a
@ -75,8 +75,6 @@ add(F, [H|T], [], Acc) ->
|
||||
add(F, T, [], [H|Acc]);
|
||||
add(F, [], [H|T], Acc) ->
|
||||
add(F, [], T, [H|Acc]);
|
||||
add(F, [], [], [0|Acc]) ->
|
||||
add(F, [], [], Acc);
|
||||
add(_, [], [], Acc) ->
|
||||
Acc.
|
||||
|
||||
@ -85,17 +83,13 @@ subtract(F = #gf256{}, A, B) ->
|
||||
add(F, A, B).
|
||||
|
||||
%%
|
||||
multiply(#gf256{}, 0, _) ->
|
||||
0;
|
||||
multiply(#gf256{}, _, 0) ->
|
||||
0;
|
||||
multiply(#gf256{}, 1, B) ->
|
||||
B;
|
||||
multiply(#gf256{}, A, 1) ->
|
||||
A;
|
||||
multiply(#gf256{exponent = E, log = L}, A, B) ->
|
||||
X = (lists:nth(A + 1, L) + lists:nth(B + 1, L)) rem ?RANGE,
|
||||
lists:nth(X + 1, E).
|
||||
multiply(F = #gf256{}, A, B) ->
|
||||
X = (log(F, A) + log(F, B)) rem ?RANGE,
|
||||
exponent(F, X).
|
||||
|
||||
%%
|
||||
exponent(#gf256{exponent = E}, X) ->
|
||||
@ -106,8 +100,8 @@ log(#gf256{log = L}, X) ->
|
||||
lists:nth(X + 1, L).
|
||||
|
||||
%%
|
||||
inverse(#gf256{exponent = E, log = L}, X) ->
|
||||
lists:nth(256 - lists:nth(X + 1, L), E).
|
||||
inverse(F = #gf256{}, X) ->
|
||||
exponent(F, ?RANGE - log(F, X)).
|
||||
|
||||
%%
|
||||
value(#gf256{}, Poly, 0) ->
|
||||
@ -131,8 +125,6 @@ monomial(#gf256{}, Coeff, Degree) when Degree >= 0 ->
|
||||
[Coeff|lists:duplicate(Degree, 0)].
|
||||
|
||||
%%
|
||||
monomial_product(#gf256{}, _, 0, _) ->
|
||||
[0];
|
||||
monomial_product(F, Poly, Coeff, Degree) ->
|
||||
monomial_product(F, Poly, Coeff, Degree, []).
|
||||
%
|
||||
@ -184,9 +176,7 @@ divide(F, IDLT, B, Q, R = [H|_]) when length(R) >= length(B), R =/= [0] ->
|
||||
M = monomial(F, Scale, Diff),
|
||||
Q0 = add(F, Q, M),
|
||||
Coeffs = monomial_product(F, B, Scale, Diff),
|
||||
R0 = add(F, R, Coeffs),
|
||||
[_|R0] = add(F, R, Coeffs),
|
||||
divide(F, IDLT, B, Q0, R0);
|
||||
divide(_, _, _, Q, R) ->
|
||||
{Q, R}.
|
||||
|
||||
|
||||
|
@ -25,14 +25,9 @@ encode(Bin, Degree) when Degree > 0 ->
|
||||
Data = binary_to_list(Bin),
|
||||
Coeffs = gf256:monomial_product(Field, Data, 1, Degree),
|
||||
{_Quotient, Remainder} = gf256:divide(Field, Coeffs, Generator),
|
||||
Remainder0 = zero_pad(Degree, Remainder),
|
||||
ErrorCorrectionBytes = list_to_binary(Remainder0),
|
||||
ErrorCorrectionBytes = list_to_binary(Remainder),
|
||||
<<ErrorCorrectionBytes/binary>>.
|
||||
|
||||
zero_pad(Length, R) when length(R) < Length ->
|
||||
zero_pad(Length, [0|R]);
|
||||
zero_pad(_, R) ->
|
||||
R.
|
||||
%%
|
||||
bch_code(Byte, Poly) ->
|
||||
MSB = msb(Poly),
|
||||
|
Loading…
Reference in New Issue
Block a user