Issue #2 - correct resolution to RFC3339 date encoding
Reverts provisional commit and applies the correct fixes to gf256 math module. This resolves incorrect ECC generation for a large number of cases where the most significant polynomial in a remainder resolves to 0 at any point during the generation of intermediate remainder values.
This commit is contained in:
		@ -75,8 +75,6 @@ add(F, [H|T], [], Acc) ->
 | 
			
		||||
	add(F, T, [], [H|Acc]);
 | 
			
		||||
add(F, [], [H|T], Acc) ->
 | 
			
		||||
	add(F, [], T, [H|Acc]);
 | 
			
		||||
add(F, [], [], [0|Acc]) ->
 | 
			
		||||
	add(F, [], [], Acc);
 | 
			
		||||
add(_, [], [], Acc) ->
 | 
			
		||||
	Acc.
 | 
			
		||||
 | 
			
		||||
@ -85,17 +83,13 @@ subtract(F = #gf256{}, A, B) ->
 | 
			
		||||
	add(F, A, B).
 | 
			
		||||
 | 
			
		||||
%%
 | 
			
		||||
multiply(#gf256{}, 0, _) ->
 | 
			
		||||
	0;
 | 
			
		||||
multiply(#gf256{}, _, 0) ->
 | 
			
		||||
	0;
 | 
			
		||||
multiply(#gf256{}, 1, B) ->
 | 
			
		||||
	B;
 | 
			
		||||
multiply(#gf256{}, A, 1) ->
 | 
			
		||||
	A;
 | 
			
		||||
multiply(#gf256{exponent = E, log = L}, A, B) ->
 | 
			
		||||
	X = (lists:nth(A + 1, L) + lists:nth(B + 1, L)) rem ?RANGE,
 | 
			
		||||
	lists:nth(X + 1, E).
 | 
			
		||||
multiply(F = #gf256{}, A, B) ->
 | 
			
		||||
	X = (log(F, A) + log(F, B)) rem ?RANGE,
 | 
			
		||||
	exponent(F, X).
 | 
			
		||||
 | 
			
		||||
%%
 | 
			
		||||
exponent(#gf256{exponent = E}, X) ->
 | 
			
		||||
@ -106,8 +100,8 @@ log(#gf256{log = L}, X) ->
 | 
			
		||||
	lists:nth(X + 1, L).
 | 
			
		||||
	
 | 
			
		||||
%%
 | 
			
		||||
inverse(#gf256{exponent = E, log = L}, X) ->
 | 
			
		||||
	lists:nth(256 - lists:nth(X + 1, L), E).
 | 
			
		||||
inverse(F = #gf256{}, X) ->
 | 
			
		||||
	exponent(F, ?RANGE - log(F, X)).
 | 
			
		||||
 | 
			
		||||
%%
 | 
			
		||||
value(#gf256{}, Poly, 0) ->
 | 
			
		||||
@ -131,8 +125,6 @@ monomial(#gf256{}, Coeff, Degree) when Degree >= 0 ->
 | 
			
		||||
	[Coeff|lists:duplicate(Degree, 0)].
 | 
			
		||||
 | 
			
		||||
%%
 | 
			
		||||
monomial_product(#gf256{}, _, 0, _) ->
 | 
			
		||||
	[0];
 | 
			
		||||
monomial_product(F, Poly, Coeff, Degree) ->
 | 
			
		||||
	monomial_product(F, Poly, Coeff, Degree, []).
 | 
			
		||||
%	
 | 
			
		||||
@ -184,9 +176,7 @@ divide(F, IDLT, B, Q, R = [H|_]) when length(R) >= length(B), R =/= [0] ->
 | 
			
		||||
	M = monomial(F, Scale, Diff),
 | 
			
		||||
	Q0 = add(F, Q, M),
 | 
			
		||||
	Coeffs = monomial_product(F, B, Scale, Diff),
 | 
			
		||||
	R0 = add(F, R, Coeffs),
 | 
			
		||||
	[_|R0] = add(F, R, Coeffs),
 | 
			
		||||
	divide(F, IDLT, B, Q0, R0);
 | 
			
		||||
divide(_, _, _, Q, R) ->
 | 
			
		||||
	{Q, R}.
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -25,14 +25,9 @@ encode(Bin, Degree) when Degree > 0 ->
 | 
			
		||||
	Data = binary_to_list(Bin),
 | 
			
		||||
	Coeffs = gf256:monomial_product(Field, Data, 1, Degree),
 | 
			
		||||
	{_Quotient, Remainder} = gf256:divide(Field, Coeffs, Generator),
 | 
			
		||||
	Remainder0 = zero_pad(Degree, Remainder),
 | 
			
		||||
	ErrorCorrectionBytes = list_to_binary(Remainder0),
 | 
			
		||||
	ErrorCorrectionBytes = list_to_binary(Remainder),
 | 
			
		||||
	<<ErrorCorrectionBytes/binary>>.
 | 
			
		||||
 | 
			
		||||
zero_pad(Length, R) when length(R) < Length ->
 | 
			
		||||
	zero_pad(Length, [0|R]);
 | 
			
		||||
zero_pad(_, R) ->
 | 
			
		||||
	R.
 | 
			
		||||
%%
 | 
			
		||||
bch_code(Byte, Poly) ->
 | 
			
		||||
	MSB = msb(Poly),
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user