diff --git a/src/gf256.erl b/src/gf256.erl index 0a274f0..5a94823 100644 --- a/src/gf256.erl +++ b/src/gf256.erl @@ -3,17 +3,17 @@ % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at -% +% % http://www.apache.org/licenses/LICENSE-2.0 -% +% % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. -%% NOTE: This module implements finite field arithmetic over the galois field -% GF(256) with a specified prime modulus. +%% NOTE: This module implements finite field arithmetic over the galois field +% GF(256) with a specified prime modulus. -module(gf256). @@ -26,7 +26,7 @@ % UNUSED %-record(gf256poly, {field, coefficients}). % NOTE: Implementation and use are greatly simplified by expressing polynomials -% simply as lists of coefficient values, rather than explicit reification of +% simply as lists of coefficient values, rather than explicit reification of % polynomial "objects". -define(RANGE, 255). @@ -36,7 +36,7 @@ field(PrimeModulus) -> Exponent = exponent_table(1, PrimeModulus, []), Log = log_table(Exponent, 1, [0]), #gf256{exponent = Exponent, log = Log}. -% +% exponent_table(X, Modulus, Acc) when length(Acc) =< ?RANGE -> case X bsl 1 of V when V > ?RANGE -> @@ -47,7 +47,7 @@ exponent_table(X, Modulus, Acc) when length(Acc) =< ?RANGE -> exponent_table(X0, Modulus, [X|Acc]); exponent_table(_, _, Acc) -> lists:reverse(Acc). -% +% log_table(E, Count, Acc) when Count =< ?RANGE -> X = index_of(Count, 0, E), log_table(E, Count + 1, [X|Acc]); @@ -59,7 +59,7 @@ index_of(X, Count, [X|_]) -> index_of(X, Count, [_|T]) -> index_of(X, Count + 1, T). -%% +%% add(#gf256{}, A, B) when is_integer(A), is_integer(B) -> A bxor B; add(#gf256{}, [0], B) when is_list(B) -> @@ -68,7 +68,7 @@ add(#gf256{}, A, [0]) when is_list(A) -> A; add(F = #gf256{}, A, B) when is_list(A), is_list(B) -> add(F, lists:reverse(A), lists:reverse(B), []). - + add(F, [H|T], [H0|T0], Acc) -> add(F, T, T0, [H bxor H0 | Acc]); add(F, [H|T], [], Acc) -> @@ -83,10 +83,10 @@ subtract(F = #gf256{}, A, B) -> add(F, A, B). %% -multiply(#gf256{}, 1, B) -> - B; -multiply(#gf256{}, A, 1) -> - A; +multiply(#gf256{}, 0, _) -> + 0; +multiply(#gf256{}, _, 0) -> + 0; multiply(F = #gf256{}, A, B) -> X = (log(F, A) + log(F, B)) rem ?RANGE, exponent(F, X). @@ -98,7 +98,7 @@ exponent(#gf256{exponent = E}, X) -> %% log(#gf256{log = L}, X) -> lists:nth(X + 1, L). - + %% inverse(F = #gf256{}, X) -> exponent(F, ?RANGE - log(F, X)). @@ -127,7 +127,7 @@ monomial(#gf256{}, Coeff, Degree) when Degree >= 0 -> %% monomial_product(F, Poly, Coeff, Degree) -> monomial_product(F, Poly, Coeff, Degree, []). -% +% monomial_product(F, [H|T], C, D, Acc) -> P = gf256:multiply(F, H, C), monomial_product(F, T, C, D, [P|Acc]); @@ -143,7 +143,7 @@ polynomial_product(_, _, [0]) -> [0]; polynomial_product(F, P0, P1) -> polynomial_product0(F, P0, P1, [], []). -% +% polynomial_product0(F, [H|T], P1, P2, Acc) -> [H0|T0] = polynomial_product1(F, H, P1, P2, []), polynomial_product0(F, T, P1, T0, [H0|Acc]);